1	i	970 [m]	4	M3 for attempt at trap rule	
				$\frac{1}{2} \times 10 \times (28 + 22 + 2[19 + 14 + 11 + 12 + 16])$	
				M2 with 1 error, M1 with 2 errors.	
				Or M3 for 6 correct trapezia, M2 for 4	
				correct trapezia, M1 for 2 correct	4
				trapezia.	
	ii	concave curve or line of traps is	1	Accept suitable sketch	
		above curve			
		$(19+14+11+11+12+16) \times 10$	M1	M1 for 3 or more rectangles with values	3
		830 to 880 incl.[m]	A1	from curve.	
	iii	$t = 10, v_{\text{model}} = 19.5$	B1		
		difference = 0.5 compared with 3%			
		of 19 = 0.57	B1f.t.	0.5 100 2.6	
				or $\frac{19}{19} \times 100 \approx 2.6$	2
	iv	$28t - \frac{1}{2}t^2 + 0.005t^3$ o.e.	M1	2 terms correct, ignore + c	
		value at 60 [– value at 0]	M1	ft from integrated attempt with 3 terms	
		960	A1		3

2	$\frac{1}{2} \times 1.5 \times (0.6 + 0.7 + 0.7)$	M2	M1 if one error	basic shape of formula must be correct. Must be 5
	2(2.3+3.1+2.8+1.8))		or M2 for sum of 5 unsimplified	strips. M0 if pair of brackets omitted or $h = 7.5$ or 1.
			individual trapezia:	allow recovery of brackets omitted to obtain correct
			2.175, 4.05, 4.425, 3.45, 1.875	answer.
				M0 for other than 5 trapezia
	= 15.975 rounded to 2 s.f. or more	A1		isw only if 15.975 clearly identified as cross-sectional
				area

(i)	47.625 [m ²] to 3 sf or more, with correct method shown	4	M3 for $\frac{1.5}{2} \times (2.3 + 2 + 2[2.7 + 3.3 + 4 + 4])$	4
(ii)	43.05	2	M1 for $1.5 \times (2.3+2.7+3.3+4+4.8+5.2+4.4+2)$	2
(iii)	$-0.013x^{4}/4 + 0.16x^{3}/3 - 0.082x^{2}/2 + 2.4x$ o.c.	M2	M1 for three terms correct	
	their integral evaluated at $x = 12$ (and 0) only 47.6 to 47.7	MI	dep on integration attempted	4
(iv)	5.30 found compared with 5.2 s.o.i.	1 D!		2
	(i) (ii) (iii) (iv)	 (i) 47.625 [m²] to 3 sf or more, with correct method shown (ii) 43.05 (iii) -0.013x⁴/4 + 0.16x³/3 -0.082x²/2 + 2.4x o.c. their integral evaluated at x 12 (and 0) only 47.6 to 47.7 (iv) 5.30 found compared with 5.2 s.o.i. 	(i) $47.625 \text{ [m}^2\text{] to 3 sf or more, with correct method shown4(ii)43.052(iii)-0.013x^4/4 + 0.16x^3/3 - 0.082x^2/2 + 2.4x \text{ o.c.}their integral evaluated at x 12 (and 0) only47.6 to 47.7M2(iv)5.30 found compared with 5.2 s.o.i.1$	(i) $47.625 \ [m^2]$ to 3 sf or more, with correct method shown4M3 for $\frac{1.5}{2} \times (2.3 + 2 + 2[2.7 + 3.3 + 4 + 4.8 + 5.2 + 5.2 + 4.4])$ (ii) 43.05 2M1 for $1.5 \times (2.3 + 2.7 + 3.3 + 4 + 4.8 + 5.2 + 4.4 + 2)$ (iii) $-0.013x^4/4 + 0.16x^3/3 - 0.082x^2/2 + 2.4x$ o.c. their integral evaluated at x 12 (and 0) only 47.6 to 47.7M2M1 for three terms correct dep on integration attempted(iv) 5.30 found compared with 5.2 s.o.i.1D1

4	95.25, 95.3 or 95	4	M3	
			$\frac{1}{2} \times 5 \times (4.3 + 0 + 2[4.9 + 4.6 + 3.9 + 2.3 + 1.2])$	
			M2 with 1 error, M1 with 2 errors.	
			Or M3 for 6 correct trapezia.	4

5	i	7-2x	M1		
	•	r = 2 gradient = 3	Δ1	differentiation must be used	
		x = 2, gradient = 5		differentiation must be used	
		x = 2, y = 4	BI		
		y - their 4 = their grad (x - 2)	M1	or use of $y = \text{their } mx + c$ and subst	
				(2, their 4), dependent on diffn	
		subst $y = 0$ in their linear eqn	M1	seen	
		completion to $x = \frac{2}{3}$ (ans given)	A1		6
	ii	f(1) = 0 or factorising to	1	or using quadratic formula	
		(r-1)(6-r) or $(r-1)(r-6)$	_	correctly to obtain $r = 1$	
		$\begin{pmatrix} x & 1 \end{pmatrix} \begin{pmatrix} 0 & x \end{pmatrix} \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} x & 1 \end{pmatrix} \begin{pmatrix} x & 0 \end{pmatrix}$	1	concerning to obtain $x = 1$	2
		0 www	1		2
		7 1	N/I	£	
	111	$\frac{1}{2}x^2 - \frac{1}{2}x^3 - 6x$	IVI I	for two terms correct; ignore $+c$	
		2 3			
		value at $2 - value$ at 1	M1	ft attempt at integration only	
		2^{1} 216+ 217			
		$\frac{2-\text{ or } 2.16 \text{ to } 2.17}{6}$	A1		
		$\frac{1}{-} \times \frac{4}{-} \times 4$ – their integral	M1		
		0.5 o.e.	Δ1		5
			A1		5

PhysicsAndMathsTutor.com